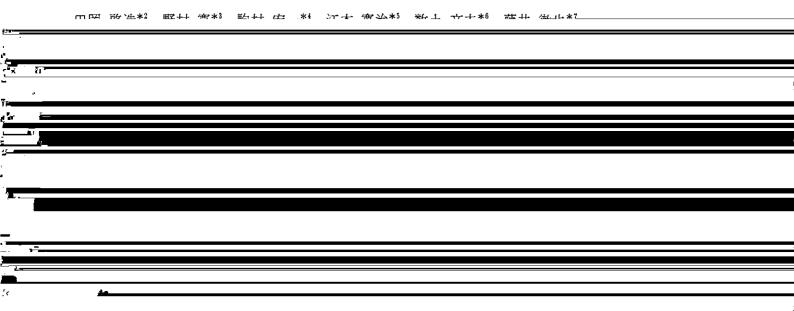
KAWASAKI STEEL GIHO Vol.17 (1985) No.3

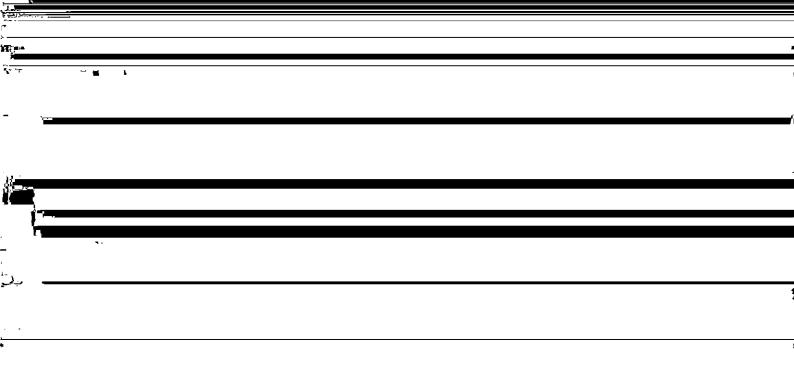

Progress of Stainless Steel Production by Top and Bottom Blown Converter

(Keizo Taoka) (Kanji Emoto)	(Hiroshi Nomura) (Fumio Sudo)	(Koichi Komamura) (Tetsuya Fujii)
: (К-ВОР)	56	1
		Ρ

Synopsis :

Taking the chance of stainless steelmaking integration at Chiba Works in April 1981, an 85 t new UHP melting furnace (MF) was erected and existing LD converters were converted into top and bottom blown converters at Chiba No.1 steelmaking shop for rationalization of the stainless steelmaking process. Saving energy by replacing electric

上底吹き転炉におけるステンレス鋼精錬の進歩**


Progress of Stainless Steel Production by Top and Bottom Blown Converter

Keizo Taoka, Hiroshi Nomura, Koichi Komamura, Kanji Emoto, Fumio Sudo, Tetsuya Fujii

要旨

Synopsis:

ステンレス鋼の精錬部門を合理化するために,昭和56年 に千葉製鉄所第1製鋼工場の既存上吹き転炉を上底吹き転 炉(K-BOP)に改造するとともに溶解炉を新設し,千葉製 Taking the chance of stainless steelmaking integration at Chiba Works in April 1981, an 85 t new UHP melting furnace (MF) was erected and existing LD converters were converted into top and bottom blown converters at Chiba

	<u>i na </u>	
۶,		
<u> </u>		
9E.		
•		
y Ar		
۶ م ۱		
	T	
	Utilization of hot metal High speed dephosphorization treatment of hot metal	
Flexibility of		
. (
THAT SHEEK I ARE A		
· • • • • • • • • • • • • • • • • • • •		
<u>bai</u> wa.		
-		
(
1		
* p 4		
1		

 \sim

3		
あり、加えて以下の利点を有する多機能な精錬炉である。	during hot meta	
(1) 上吹きランスを備えているため,加炭吹錬,炉内2次燃焼な	····	emical composition (%) Temp.
(1) 上吹きランスを備えているため、加炭吹錬、炉内2次燃焼などの熱補償に有利でかつ生産性が高い。	····	
 (1) 上吹きランスを備えているため、加炭吹錬、炉内2次燃焼などの熱補償に有利でかつ生産性が高い。 (2) プロパン、その他の冷却ガスが使用できるので羽口保護に有利である。 	Cl	Image: Simple of the second system Temp. (°C) Temp. (°C) Si Mn P S (°C) 0.25 0.30 0.140 0.035 1 480
 (1) 上吹きランスを備えているため,加炭吹錬,炉内2次燃焼な どの熱補償に有利でかつ生産性が高い。 (2) プロパン,その他の冷却ガスが使用できるので羽口保護に有 利である。 (3) 生石灰粉インジェクションが可能なため,還元期の脱硫に有 	Cl C Tapping from BF 4.50 Before treatment 4.50	Image: Simple formation (%) Temp. (°C) Si Mn P S 0.25 0.30 0.140 0.035 1 480 0.10 0.25 0.140 0.035 1 380
 (1) 上吹きランスを備えているため、加炭吹錬、炉内2次燃焼などの熱補償に有利でかつ生産性が高い。 (2) プロパン、その他の冷却ガスが使用できるので羽口保護に有利である。 	Cl C Tapping from BF 4.50	memical composition (%) Temp. (°C) Si Mn P S 0.25 0.30 0.140 0.035 1 480
 (1) 上吹きランスを備えているため,加炭吹錬,炉内2次燃焼な どの熱補償に有利でかつ生産性が高い。 (2) プロパン,その他の冷却ガスが使用できるので羽口保護に有 利である。 (3) 生石灰粉インジェクションが可能なため,還元期の脱硫に行 利である。 	Cl C Tapping from BF 4.50 Before treatment 4.50	Image: Simple composition (%) Temp. (°C) Si Mn P S (°C) 0.25 0.30 0.140 0.035 1 480 0.10 0.25 0.140 0.035 1 380
 (1) 上吹きランスを備えているため,加炭吹錬,炉内2次燃焼な どの熱補償に有利でかつ生産性が高い。 (2) プロパン,その他の冷却ガスが使用できるので羽口保護に有 利である。 (3) 生石灰粉インジェクションが可能なため,還元期の脱硫に行 利である。 	Cl C Tapping from BF 4.50 Before treatment 4.50	Image: Simple composition (%) Temp. (°C) Si Mn P S (°C) 0.25 0.30 0.140 0.035 1 480 0.10 0.25 0.140 0.035 1 380
 (1) 上吹きランスを備えているため,加炭吹錬,炉内2次燃焼な どの熱補償に有利でかつ生産性が高い。 (2) プロパン,その他の冷却ガスが使用できるので羽口保護に有 利である。 (3) 生石灰粉インジェクションが可能なため,還元期の脱硫に行 利である。 	Cl C Tapping from BF 4.50 Before treatment 4.50	Image: Simple composition (%) Temp. (°C) Si Mn P S (°C) 0.25 0.30 0.140 0.035 1 480 0.10 0.25 0.140 0.035 1 380
 (1) 上吹きランスを備えているため,加炭吹錬,炉内2次燃焼な どの熱補償に有利でかつ生産性が高い。 (2) プロパン,その他の冷却ガスが使用できるので羽口保護に有 利である。 (3) 生石灰粉インジェクションが可能なため,還元期の脱硫に行 利である。 	Cl C Tapping from BF 4.50 Before treatment 4.50	Image: Similar Composition (%) Temp. (°C) Si Mn P S 0.25 0.30 0.140 0.035 1 480 0.10 0.25 0.140 0.035 1 380
 (1) 上吹きランスを備えているため、加炭吹錬、炉内2次燃焼などの熱補償に有利でかつ生産性が高い。 (2) プロバン、その他の冷却ガスが使用できるので羽口保護に有利である。 (3) 生石灰粉インジェクションが可能なため、還元期の脱硫に有利である。 	Cl C Tapping from BF 4.50 Before treatment 4.50	Image: Similar Composition (%) Temp. (°C) Si Mn P S 0.25 0.30 0.140 0.035 1 480 0.10 0.25 0.140 0.035 1 380
 (1) 上吹きランスを備えているため、加炭吹錬、炉内2次燃焼などの熱補償に有利でかつ生産性が高い。 (2) プロバン、その他の冷却ガスが使用できるので羽口保護に有利である。 (3) 生石灰粉インジェクションが可能なため、還元期の脱硫に有利である。 	Cl C Tapping from BF 4.50 Before treatment 4.50	Image: Similar Composition (%) Temp. (°C) Si Mn P S 0.25 0.30 0.140 0.035 1 480 0.10 0.25 0.140 0.035 1 380
 (1) 上吹きランスを備えているため、加炭吹錬、炉内2次燃焼などの熱補償に有利でかつ生産性が高い。 (2) プロバン、その他の冷却ガスが使用できるので羽口保護に有利である。 (3) 生石灰粉インジェクションが可能なため、還元期の脱硫に有利である。 	Cl C Tapping from BF 4.50 Before treatment 4.50	Image: Similar Composition (%) Temp. (°C) Si Mn P S (°C) 0.25 0.30 0.140 0.035 1 480 0.10 0.25 0.140 0.035 1 380
 (1) 上吹きランスを備えているため、加炭吹錬、炉内2次燃焼などの熱補償に有利でかつ生産性が高い。 (2) プロバン、その他の冷却ガスが使用できるので羽口保護に有利である。 (3) 生石灰粉インジェクションが可能なため、還元期の脱硫に有利である。 	Cl C Tapping from BF 4.50 Before treatment 4.50	Image: Similar Composition (%) Temp. (°C) Si Mn P S 0.25 0.30 0.140 0.035 1 480 0.10 0.25 0.140 0.035 1 380

^{4.6}[\Box 3

205

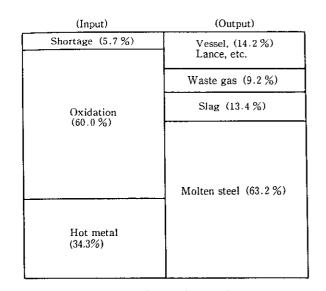



Fig. 5 Heat balance of hot metal process

/ 7.0

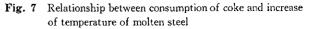
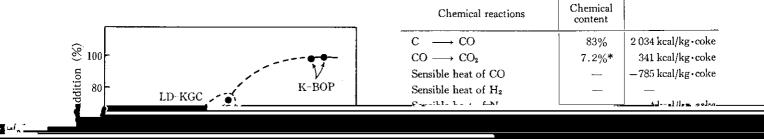
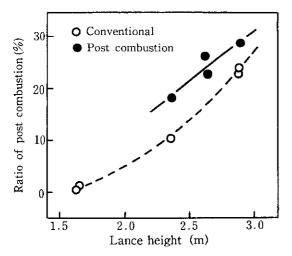
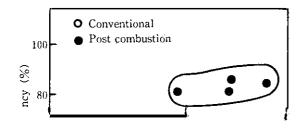
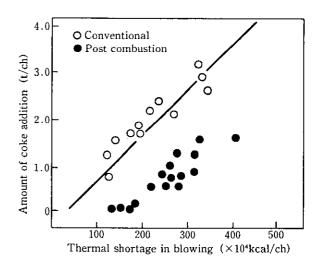
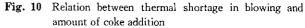
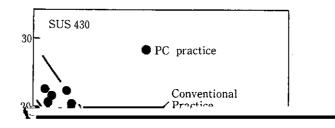
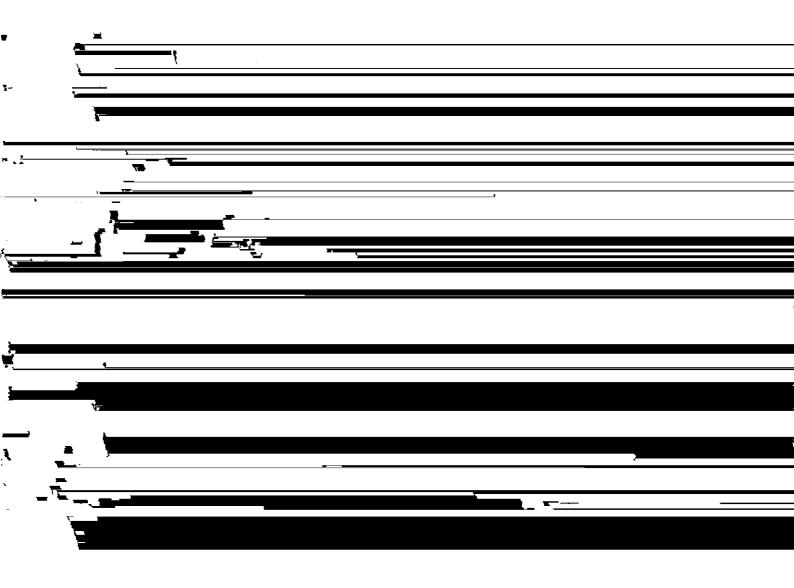
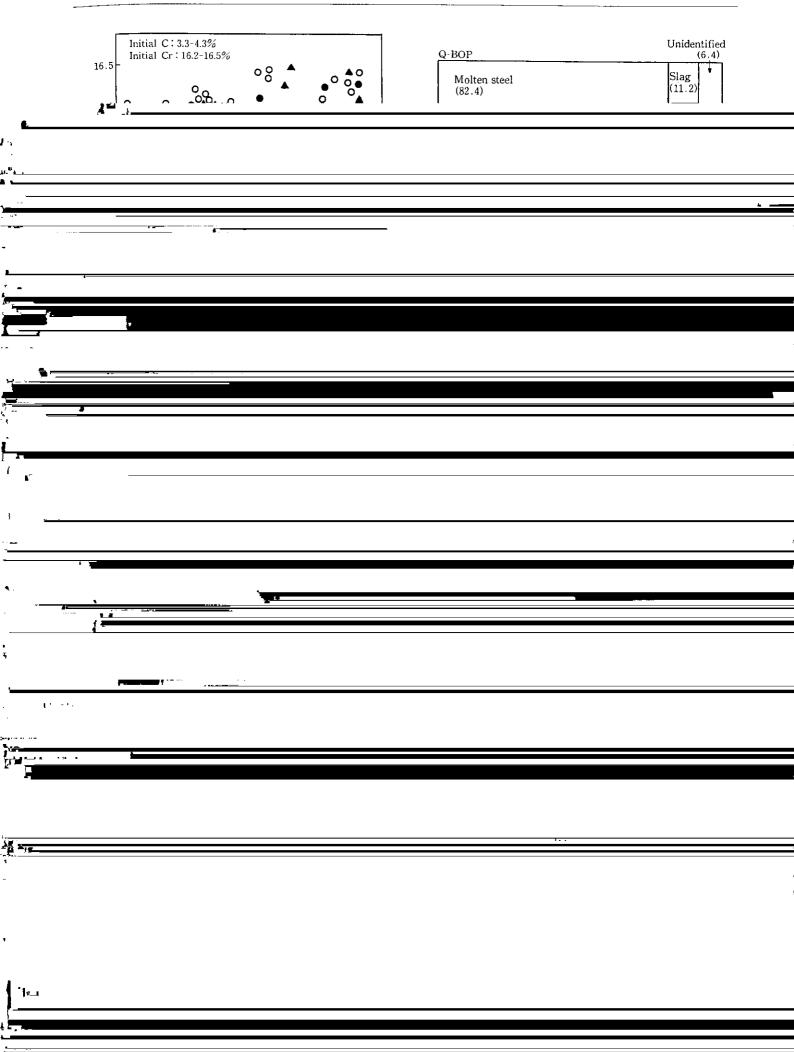



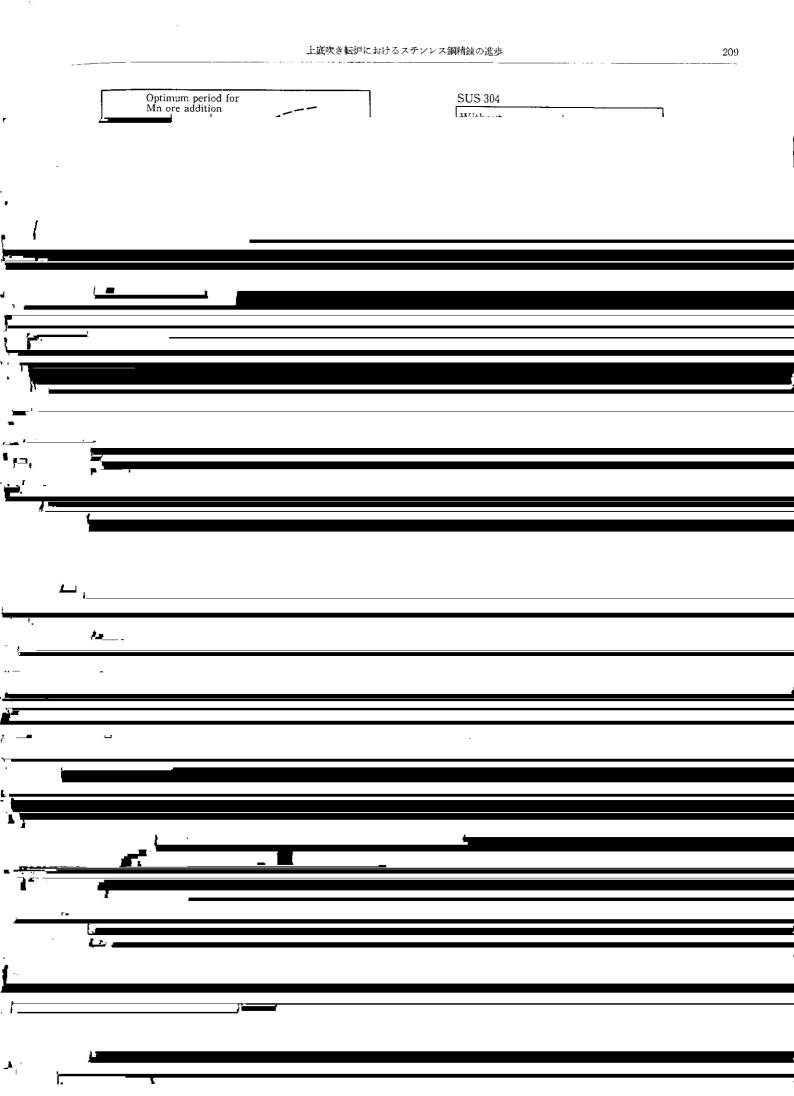
Table 3 Heat efficiency of coke

Į.


Fig. 8 Relation between lance height and ratio of post combustion





2.27

<u> </u>	· · · · · · · · · · · · · · · · · · ·			
L	· · · · ·			
ا				
2				
<u></u>				
/				
	1			
a				
' h				
. <u>n</u>				
-				
, a				
t				
Þ				
. 1				
A.				
_				
·	· · · · ·			
···				
	ので、テンではマラガム杆値からスラガ相の F	Pa. を推完し ^{5,8})。Pa.	によるものと推定できる。	
,				
1				
~ i				
~ i				
· · · ·				
· · · ·				
· · · ·				
· · · ·				
· · · ·	Fe 7			
· · · · · · · · · · · · · · · · · · ·	Fe 7	- -		
· · · · · · · · · · · · · · · · · · ·	Fe 7			
· · · · · · · · · · · · · · · · · · ·	Fe 7			
4 	Fe 7			
	Fe 7			
	Fe 7	·		
	Fe 7			
	Fe 7	· · · · · · · · · · · · · · · · · · ·		
	Fe 7			
	Fe 7			
	Fe 7	· · · · · · · · · · · · · · · · · · ·		
	Fe 7			

· -	参考文献 1) 大谷尚史,柴田 勝,朝徳隆一,浜田俊二,矢治源平,加藤嘉英:川 · · · · · · · · · · · · · · ·	tralia), 7 (1980)
(s		
- •		
· - ·		
f		
÷,	ι	2
≡ 4, ¦		
i		
- #7 2 ,		
·		
<u> </u>		
· ·		
• •		
-	- 2) 田岡啓造,大谷尚史,今井卓雄,朝穂隆一,広瀬充郎:鉄と鋼,68	開社〕
٤.	(1982) 11, S 1032	8) E. T. Turkdogan: "Physical Chemistry of High Temperature
	د. ۲ ۰٬۰۰۰ ۲	
)]		
İ	_	
,		
۰ ،	ks.	
,		
-{		
£		
*		
، ۲		